
INTRODUCTION

INCREASING EVIDENCE over the past several years has revealed
important clues regarding reactive oxygen species (ROS),

in particular, their role in both normal and abnormal cellular
function. ROS are reduction/oxidation molecules derived from
molecular oxygen that include superoxide anion (O2

�2), hy-
drogen peroxide (H2O2), and hydroxyl radical (OH�). They are
generated by a variety of extracellular stimuli such as growth
factors, G protein-coupled receptor (GPCR) agonists, cyto-
kines, ultraviolet radiation, increased osmolarity, and other
cellular stresses (22, 45). Recently, ROS were widely recog-
nized as prominent players in the pathophysiology of many
diseases, including cardiovascular diseases such as hyperten-
sion, atherosclerosis, and restenosis after vascular injury (8,

32). In fact, the majority of vascular cell types that construct
vessel walls generate ROS, supporting the notion that ROS
may function as regulators and inducers of these diseases (32).
Currently, ROS are proposed to induce cardiovascular diseases
by three major mechanisms: (1) oxidation of lipid (LDL) to
produce oxidized LDL, which plays a major role in the devel-
opment of atherosclerosis; (2) inhibition of nitric oxide function
through O2

�2 and nitric oxide interaction that forms peroxyni-
trite; and (3) activation of intracellular signal transduction path-
ways as second messengers (8, 32, 50).

ROS-mediated signaling pathways are known to promote a
variety of cellular events, such as growth, differentiation, sur-
vival, apoptosis, and inflammation, as well as gene expression,
in vascular cells (32, 38, 50). However, of particular interest
is the precise mechanism of how ROS stimulate or modulate
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ABSTRACT

Enhanced production of reactive oxygen species (ROS) such as H2O2 and a failure in ROS removal by scav-
enging systems are hallmarks of several cardiovascular diseases such as atherosclerosis and hypertension.
ROS act as second messengers that play a prominent role in intracellular signaling and cellular function. In
vascular smooth muscle cells (VSMCs), a vascular pathogen, angiotensin II, appears to initiate growth-
promoting signal transduction through ROS-sensitive tyrosine kinases. However, the precise mechanisms by
which tyrosine kinases are activated by ROS remain unclear. In this review, the current knowledge that sug-
gests how certain tyrosine kinases are activated by ROS, along with their functional significance in VSMCs,
will be discussed. Recent findings suggest that transactivation of the epidermal growth factor receptor by
ROS requires metalloprotease-dependent heparin-binding epidermal growth factor-like growth factor pro-
duction, whereas other ROS-sensitive tyrosine kinases such as PYK2, JAK2, and platelet-derived growth fac-
tor receptor require activation of protein kinase C-d. Each of these ROS-sensitive kinases could mediate spe-
cific signaling critical for pathophysiological responses. Detailed analysis of the mechanism of cross-talk and
the downstream function of these various tyrosine kinases will yield new therapeutic interventions for cardio-
vascular disease. Antioxid. Redox Signal. 5, 771–780.
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extracellular or intracellular targets that leads to pathophysio-
logical responses in vascular cells. Phosphorylation of recep-
tor and non-receptor tyrosine kinases is a critical step in sig-
nal transduction that leads to specific cellular functions such
as cell growth. Interestingly, both protein tyrosine phospho-
rylation and ROS production are commonly induced by sev-
eral growth factors, and ROS can activate many tyrosine ki-
nases. Thus, understanding the mechanism and downstream
consequences of ROS-mediated tyrosine kinase activation is
a current research focus by many researchers. Researchers have
elucidated important roles and mechanisms of ROS in vascu-
lar smooth muscle cells (VSMCs), especially in regards to ac-
tivation of tyrosine kinases, which could be responsible for
specific cellular responses leading to cardiovascular diseases.

It is now recognized that events such as hypertrophy, hy-
perplasia, and migration of VSMCs may be initiated through
tyrosine kinase activation induced by ROS production in re-
sponse to various vascular pathogens such as angiotensin II
(AngII) and platelet-derived growth factor (PDGF). AngII, a
highly studied vasoactive hormone of the renin–angiotensin
system, plays a significant role in the regulation of cardiovas-
cular homeostasis mainly through the AngII type 1 (AT1) re-
ceptor (90). One major undesired consequence of AngII is its
role in the development of cardiovascular diseases, including
hypertension, atherosclerosis, and heart failure (13, 14, 29, 79).
Stimulated AT1 receptors lead to rapid protein tyrosine phos-
phorylation of various signaling molecules in AngII target
cells, and thereby lead to a prototypical growth promoting
signal such as mitogen-activated protein kinase (MAPK/
extracellular signal-regulated kinase [ERK]) activation and
induction of c-fos and c-jun expression (7, 15, 31). ROS have
been shown to mediate many of the pathological effects of
AngII. In VSMCs, AngII is a potent ROS inducer that gener-
ates the majority of ROS through NAD(P)H oxidase. Acting
via a ROS-dependent mechanism, AngII mediates hypertro-
phy and/or proliferation of VSMCs (30).

PDGF is produced in a variety of cardiovascular cells and is
one of the strongest inducers of VSMC growth and migration
(35). Importantly, PDGF is also a potent inducer of ROS in
VSMCs and is known to stimulate p42/44 MAPK/ERK and
subsequent mitogenic responses through ROS production (86).
Pathophysiologically, PDGF has been reported to play a role in
cardiovascular diseases such as atherosclerosis and restenosis,
which could involve ROS-dependent mechanisms (35, 36).

New accumulating evidence suggests that activation of sev-
eral ROS-sensitive tyrosine kinases is an important initial sig-

naling trigger that leads to specific signaling events responsible
for functional modulation of VSMCs. Therefore, in this review,
the discussion will focus on current findings that suggest novel
mechanisms of how ROS mediate the activation of several re-
ceptor and non-receptor tyrosine kinases in VSMCs, as well as
the pathophysiological significance of their activation.

ROS-ACTIVATED TYROSINE KINASES 
IN VSMCS

Tyrosine kinases (receptor and non-receptor) in VSMCs
that are ROS-sensitive or utilize ROS-dependent mechanisms
for activation are listed in Table 1 (21, 24, 25, 28, 33, 55, 56,
70, 71, 74, 76, 78, 84, 86, 93). It can be hypothesized that
multiple risk factors ® ROS ® tyrosine kinase activation ®
abnormal VSMC response ® cardiovascular disease. Gener-
ally, three mechanisms have been proposed by which ROS ac-
tivate tyrosine kinases. First, ROS may directly activate ki-
nases by altering protein–protein interactions depending on
sulfhydryl groups. Second, protein tyrosine phosphatases that
contain a cysteine residue in their activation site may be di-
rectly inhibited by ROS, which in turn results in tyrosine
phosphorylation of the kinases and may affect their activities.
Third, oxidation stimulates proteolysis of regulatory proteins
that may inhibit tyrosine kinase activity (8). It has been sug-
gested that at least two or more distinct mechanisms are in-
volved in tyrosine kinase activation by ROS in VSMCs. In the
following sections of this review, we will discuss the role of
each tyrosine kinase with respect to how ROS induce their ac-
tivation and the functional and pathophysiological consequence
in VSMCs. In addition to the tyrosine kinases listed in Table
1, several other tyrosine kinases expressed in different cell
types have also been shown to be activated via a ROS-depen-
dent mechanism. However, the possible roles of these poten-
tial ROS-sensitive tyrosine kinases such as insulin-like growth
factor 1 receptor and focal adhesion kinase in VSMCs remain
to be studied.

Epidermal growth factor (EGF-receptor “trans”-
activation by ROS

Recently it has become apparent that the EGF receptor is a
significant contributor in a number of signaling networks ac-
tivated by stimuli that do not directly interact with the recep-
tor (“transactivation”) (10). These stimuli include various GPCR
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TABLE 1. ROS-SENSITIVE TYROSINE KINASES IN VSMCS

Tyrosine kinase Agonists References

Receptor
EGF receptor H2O2, AngII, PDGF, oxidized LDL 25, 28, 70, 76, 84, 93
PDGF receptor H2O2, AngII, PDGF, oxidized LDL 21, 33, 74, 86
FGF receptor H2O2 71

Non-receptor
JAK2 H2O2, O2

�2, AngII, thrombin 28, 55, 56, 78
PYK2 H2O2, AngII 24
Src H2O2, AngII 74, 93

FGF, fibroblast growth factor.



ligands, membrane depolarizing agents, and environmental
stressors that rapidly induce EGF receptor tyrosine phospho-
rylation (some act within 1 min). In particular, studies have
shown that not only AngII (16) but also H2O2 (70), endothelin
(40), thrombin (44), oxidized LDL (84), b-migrating very-
LDL (99), and mechanical stretch (41) transactivate the EGF
receptor in cultured VSMCs (Fig. 1). Moreover, a rapid trans-
activation of aortic EGF receptor by acute AngII infusion in
vivo was reported (46). Since the EGF receptor transactiva-
tion mediates several critical mitogenic signal transductions
by these stimuli, the EGF receptor could be a point of signal
convergence by which several cardiovascular risk factors me-
diate pathophysiological responses associated with cardiovas-
cular diseases. How is the EGF receptor transactivated by
these risk factors in VSMCs?

H2O2 has been shown to induce tyrosine phosphorylation
of the EGF receptor and to cause the association of Shc–
Grb2–Sos complex with the EGF receptor in VSMCs (70). In
VSMCs, the EGF receptor is a redox-sensitive tyrosine ki-
nase that is activated by a GPCR agonist, AngII (25, 93). It
has been reported that N-acetylcysteine, a potent ROS scav-
enger, is capable of inhibiting AngII-induced EGF receptor
transactivation, and that H2O2 induced EGF receptor auto-
phosphorylation at Tyr1,068, a Grb2 binding site, strongly
suggesting ROS are required for EGF receptor transactivation
induced by AngII (25). Furthermore, lysophosphatidic acid-
induced transactivation of the EGF receptor requires ROS in
HeLa cells (12). Taken together, these data indicate that the
EGF receptor utilizes ROS for transactivation by GPCRs, how-
ever, the precise mechanisms by which ROS transactivate the
EGF receptor are still unknown.

A mechanism by which ROS transactivate the EGF recep-
tor may involve inhibition of tyrosine phosphatases, which in
turn results in enhanced phosphorylation of tyrosine kinases
(22). In support of this notion, H2O2 and various other thiol-
oxidizing agents could inhibit dephosphorylation of the EGF
receptor in rat-1 cells (47). However, in VSMCs there exists
another mechanism by which ROS can transactivate the EGF
receptor. Metalloprotease-dependent heparin-binding EGF-
like growth factor (HB-EGF) generation has been implicated
in EGF receptor transactivation initiated through several GPCRs

(19, 67). HB-EGF belongs to the EGF family of growth fac-
tors and is a strong stimulant of mitogenesis and migration of
VSMCs, two critical events involved in the pathogenesis of
atherogenic vascular diseases (68). In fact, HB-EGF is pres-
ent in atherosclerotic plaques, and VSMCs produce HB-EGF
in response to various pathogens (68), suggesting a critical role
for HB-EGF in mediating vascular remodeling.

In VSMCs, H2O2 stimulates EGF receptor transactivation
via metalloprotease-dependent HB-EGF generation (Fig. 2)
(28). Although the metalloprotease responsible for the HB-
EGF generation induced by ROS has not been identified, both
matrix metalloproteases (87, 97) and a disintegrin and metal-
loprotease (ADAM) family of metalloproteases (5, 42, 51)
have been implicated in ectodomain shedding of HB-EGF stim-
ulated by various agonists. Interestingly, H2O2 was recently
shown to enhance ADAM17 activity directly and ADAM17-
mediated ectodomain shedding (98). Activation of metallo-
proteases is thought to occur via a thiol group from a cysteine
residue within the inhibitory prodomain of these metallopro-
teases that interacts with zinc in their catalytic domain. Since
ROS are known to interact with thiol groups, they may oxi-
dize these electrophilic thiol groups and disrupt the cysteine–
zinc bond, leading to activation of the metalloprotease.

In addition, the mechanism of ROS-induced EGF receptor
transactivation may further involve intracellular Ca2+ elevation,
upstream tyrosine kinases, and/or heterodimer formation with
the PDGF receptor. Intracellular Ca2+ elevation is required for
the EGF receptor transactivation by AngII, endothelin, and
mechanical stretch in VSMCs (16, 40, 41). It has been re-
ported that Ca2+ exists upstream of HB-EGF generation (19).
Since H2O2 has no major effect on intracellular Ca2+ in VSMCs
(24), Ca2+ may mediate ROS production, which leads to EGF
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FIG. 1. Multiple risk factors lead to phosphorylation and
transactivation of both the EGF receptor (EGF-R) and the
PDGF receptor (PDGF-R) in VSMCs. bVLDL, b-migrating
very-LDL; oxLDL, oxidized LDL.

FIG. 2. Hypothetical signaling mechanisms of ROS lead to
transactivation of the EGF receptor (EGFR) and PDGF re-
ceptor (PDGFR) and activation of non-receptor tyrosine
kinases (PYK2, JAK2, and Src) promoting functional re-
sponses critical for vascular pathogenesis.
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receptor transactivation. c-Src has been implicated in EGF re-
ceptor transactivation by several GPCRs (4, 54, 93), and acti-
vation of Src-mediated cascades could further amplify ROS
production in VSMCs (81). Moreover, H2O2-induced EGF re-
ceptor transactivation was inhibited by a selective Src inhibitor,
PP2, in endothelial cells (11). ROS may modulate c-Src, which
then activates the metalloprotease responsible for HB-EGF
generation through protein–protein interaction. In this regard,
c-Src appears to exist upstream of HB-EGF release in f ibrob-
lasts (66). Alternatively, c-Src phosphorylates the EGF recep-
tor in response to ROS to induce EGF receptor transactiva-
tion. To support this idea, only certain tyrosine sites have been
shown to be phosphorylated by AngII in an ROS-dependent
manner in VSMCs (93). Also, it has been shown that PDGF
stimulation of VSMCs results in the formation of a PDGF-b
receptor–EGF receptor heterodimer leading to transactivation
of EGF receptor, which involves ROS production and a Src
kinase activation (76). Therefore, c-Src may have multiple
roles in mediating EGF receptor transactivation by H2O2. In
contrast to these studies, a recent paper has demonstrated that
the direct association of EGF receptor and AngII receptor
after AngII stimulation induces EGF receptor transactivation
in COS cells, suggesting that an ROS-independent mechanism
of EGF receptor transactivation may also exist in certain con-
ditions (82).

Transactivation of the EGF receptor has been implicated in
several disease processes (5, 51, 63), making it a current and
important topic of signal transduction research. AngII-induced
transactivation of the EGF receptor is necessary for the acti-
vation of downstream signal transduction molecules, such as
ERK, p38 MAPK, Akt, and p70 S6 kinase, that subsequently
promote hypertrophy and hyperplasia of VSMCs (15, 18, 19).
Among these kinases, p38 MAPK and Akt have been shown
to be redox-sensitive in VSMCs, whereas redox sensitivity of
ERK in VSMCs remains controversial (23, 25, 91, 92). Inter-
estingly, EGF receptor transactivation through GPCRs is re-
quired for cardiac hypertrophy induced by AngII as well as by
pressure overload (5, 43). Also, EGF receptor transactivation
mediates VSMC migration in response to AngII (75). There-
fore, it is now becoming clear that the transactivation of the
EGF receptor plays a significant role in the development and
progression of cardiovascular diseases and that this signaling
cascade may provide for alternative therapeutic targets for
prevention of such diseases.

PDGF receptor “trans”-activation by ROS

The PDGF receptor, which exists as an a- or b-isoform, is
a transmembrane spanning receptor tyrosine kinase (35). Sim-
ilar to the EGF receptor, the PDGF receptor can be activated
not only by its cognate ligands but also by other stimuli in a
ligand-independent manner in VSMCs (Fig. 1). Cyclic me-
chanical stretch rapidly (witin 4 min) induces tyrosine phos-
phorylation of PDGF-a receptor and its association with Grb2,
an adaptor molecule essential for ERK/MAPK activation in
VSMCs (37). Oxidized LDL, ceramide, and AngII transacti-
vate the PDGF-b receptor in cultured VSMCs (21, 53). The
transactivation of the PDGF-b receptor appears to involve
ROS in VSMCs (21, 33). Since PDGF is a potent mitogen and
chemoattractant in VSMCs and has long been implicated in

atherosclerosis as well as other cardiovascular diseases (35),
these findings indicate the unique activation mechanism of
the PDGF receptor induced by ROS and its downstream patho-
physiological significance.

In VSMCs, H2O2 stimulates phosphorylation of the PDGF-
b receptor on tyrosine residues, one of which was identi-
fied as Tyr1,021, a phospholipase C (PLC)-g binding site (74).
Both the binding of PLC-g to phosphorylated Tyr1,021 in the
C-terminal tail of the PDGF-b receptor and the activation of
PLC-g are believed to be involved in cell growth and chemo-
taxis in certain circumstances (34). The fact that PLC-g is re-
cruited to the PDGF-b receptor after H2O2 stimulation is im-
portant supportive evidence regarding H2O2-induced PDGF-b
receptor transactivation (74). Interestingly, in the same study,
H2O2 induced association of c-Src and protein kinase C (PKC)-d
with the PDGF-b receptor. These non-receptor kinases (c-Src
and PKC-d) are required for H2O2-induced PDGF-b receptor
transactivation but not for PDGF-BB (ligand)-induced recep-
tor activation. Thus the PDGF receptor transactivation is lig-
and-independent, and therefore does not require PDGF re-
ceptor kinase activity or metalloprotease activation (74). In
addition, it has been shown that a non-receptor tyrosine kinase,
PYK2, is required for PDGF receptor but not EGF receptor
transactivation by ROS in VSMCs by using dominant-negative
PYK2 mutants (20) (Fig. 3). Other investigators have demon-
strated an involvement of phosphotyrosine phosphatase in
ROS-induced PDGF-b receptor transactivation in mesangial
cells (9) and in VSMCs (21). Alternatively, ROS-dependent
transactivation of PDGF receptor induced by AngII may re-
quire a tyrosine kinase distinct from Src, PYK2, or JAK2 in
VSMCs (33). It should be noted that extracellular administra-
tion of H2O2 and receptor stimulation of H2O2 production may
differentially activate signaling pathways, which may explain
some of the disagreement in the literature. Taken together, these
findings clearly highlight the unique mechanism of PDGF
receptor transactivation that is distinct from a ligand-depen-
dent autophosphorylation of the PDGF receptor as well as
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FIG. 3. ROS-dependent phosphorylation of the PDGF recep-
tor requires tyrosine kinase activity of PYK2. VSMCs were
transfected with either vector or kinase-inactive (KI)-PYK2 (10
multiplicity of infection) for 48 h and stimulated by H2O2 (20
µM) for 10 min. The cell lysates were immunoblotted with anti-
bodies to Tyr1,021-phosphorylated PDGF receptor (pPDGF-R)
and Tyr1,068-phosphorylated EGF receptor (pEGF-R) (25, 72).
PDGF receptor but not EGF receptor phosphorylation was inhib-
ited by KI-PYK2 transfection.
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metalloprotease-dependent transactivation of the EGF recep-
tor by ROS in VSMCs (Fig. 2).

In comparison with the EGF receptor, little is known about
the downstream function of PDGF receptor transactivation.
Since its transactivation mechanism is not via autophospho-
rylation, the downstream significance should be different
from PDGF-mediated responses in VSMCs. Our finding that
PLC-g as well as c-Src and PKC-d associates with the PDGF
receptor suggests that the receptor acts as a scaffold in ROS
signaling. Interestingly, PLC-g activated by ROS was recently
shown to be involved in cell survival against ROS-induced
apoptosis (60). In addition, PDGF receptor phosphorylation
was enhanced in balloon-injured carotid arteries, which was
inhibited by AT1 receptor antagonists (2). Taken together, these
data suggest the possible involvement of PDGF receptor trans-
activation in the cardiovascular remodeling process.

JAK2 activation by ROS and its signaling

JAK2 is a member of the JAK family of tyrosine kinases,
which are critical for signal transduction important for sev-
eral biological functions. In particular, JAK activation is re-
quired for activation of the signal transducers and activators
of transcription (STAT) pathway in response to activated cy-
tokine receptors (69). An early study demonstrated that AngII
could also stimulate tyrosine phosphorylation and activation
of JAK2, which subsequently leads to STAT isoform tyrosine
phosphorylation (57). Interestingly, AngII also stimulates the
association of JAK2 with the AT1 receptor in VSMCs (57),
cardiac myocytes (48), and renal mesangial cells (58), which
may partly explain the cytokine-like actions of AngII in medi-
ating cardiovascular remodeling. In addition to AngII, a vari-
ety of other GPCR agonists have recently been shown to acti-
vate JAK/STAT pathways (94). Research has revealed that JAK2
activation by AngII requires ROS in VSMCs (28, 78) and that
H2O2 rapidly and strongly induces JAK2 activation in VSMCs
(28, 55). Similarly, H2O2 activate the JAK/STAT pathway in
cultured fibroblasts (1, 83). These f indings suggest that GPCR
agonists activate JAK2 through ROS production.

In VSMCs, intracellular Ca2+ elevation and PKC-d activa-
tion initiated by PLC-derived second messengers are involved
in AngII-induced JAK2 activation. Furthermore, PYK2 is re-
quired for Ca2+- and PKC-d-mediated JAK2 activation (27).
These f indings provide new information whereby GPCR-
dependent JAK2 activation may be mediated by ROS. Re-
cently, it has been reported that the PKC-d isoform is re-
quired for JAK2 activation by H2O2 in VSMCs (28), which is
in line with the above-mentioned f inding. Previously, PKC-d
has been implicated in ROS-dependent activation of other ty-
rosine kinases such as c-Abl and c-Src (85). In this regard,
several reports indicate that H2O2 stimulates PKC-d activity
in various cell types (49, 62). In fact, our own group has
shown that H2O2 stimulates PKC-d activity in VSMCs (28).
Interestingly, H2O2-induced activation of PKC-d is reported
to be independent from tyrosine phosphatase inhibition (95).
Utilizing dominant-negative PYK2 mutants, it has been shown
that PYK2, which is also downstream of PKC-d in VSMCs, is
required for JAK2 activation but not for EGF receptor activa-
tion by H2O2 (26). In fibroblasts, a Src kinase was shown to
exist upstream of JAK2 activation by ROS (1). As illustrated

in Fig. 2, these findings indicate that there are at least two
major tyrosine kinase activation mechanisms utilized by ROS
in VSMCs. One mechanism involves ROS-activated PKC-d
that leads to the activation of the PYK2/JAK2 pathway or the
PDGF receptor transactivation. The other mechanism involves
activation of a ROS-dependent metalloprotease cleavage of
proHB-EGF to generate active HB-EGF that leads to EGF re-
ceptor transactivation.

Although the exact cellular function of JAK2 activation via
ROS in VSMCs is unknown, JAK2 activation by AngII has
been proposed to mediate VSMC proliferation (59). Also, the
AT1 receptor-mediated JAK/STAT pathway was shown to be
involved in cardiac hypertrophy (64) and neointima forma-
tion after balloon injury (80). Along with the f indings that
ROS-dependent JAK2 activation is required for AngII-induced
cytokine induction (78) and thrombin-induced heat shock
protein induction in VSMCs (56), ROS-induced JAK2 activa-
tion could mediate cellular remodeling through a cytokine
like inflammatory response in cardiovascular diseases.

PYK2 as unique ROS target

PYK2 is a non-receptor tyrosine kinase, also identified as
cell adhesion kinase b, related adhesion focal tyrosine kinase,
or calcium-dependent tyrosine kinase (6, 52, 77). PYK2 re-
quires Ca2+ and/or PKC for its activation, which results from
a wide variety of extracellular stimuli such as GPCR agonists,
growth factors, cytokines, and environmental stresses (6, 52).
In cultured VSMCs, it has been demonstrated that AngII rapidly
stimulates PYK2 kinase activity (26, 73) and phosphorylation at
Tyr402, a putative autophosphorylation site of PYK2 (24, 26).

In VSMCs, PYK2 is activated by extracellular administra-
tion of H2O2 (24). Depending on the cell type, PYK2 activates
a downstream MAPK family that include ERK, c-Jun N-terminal
kinase (JNK), and p38 MAPK (52, 65, 89). In VSMCs and
cardiac fibroblasts, PYK2 is involved in AngII-induced JNK
activation (26, 61). In addition, AngII stimulates association
of PYK2 with c-Src in VSMCs (17), and c-Src was shown to
mediate ROS-dependent JNK activation but not p38 MAPK
or ERK activation in VSMCs (96). Some researchers have sug-
gested a partial involvement of PYK2 in EGF receptor trans-
activation in fibroblasts (4), and that it plays a significant role
in mediating AngII-induced growth-promoting signals (72).
However, based on the above-mentioned findings, it is more
likely that a ROS-sensitive kinase, PYK2, plays a major role
in mediating JNK and JAK/STAT pathway activation leading
to stress and inflammatory responses in VSMCs.

Src family kinase activation by ROS

Src family kinases now include nine members, of which
Src, Fyn, and Yes are expressed in most tissues. These kinases
can be activated by a variety of receptors, channels, and ex-
tracellular stresses, including ROS (88). As mentioned above,
Src kinases seem to be critically involved in ROS-mediated
activation of other tyrosine kinases such as activation of the
EGF receptor, the PDGF receptor, and JAK2 in VSMCs. Im-
portantly, c-Src was previously shown to mediate the phos-
phorylation of paxillin that is responsible for focal adhesion
formation in VSMCs (39). Src kinase activation by ROS likely
requires an interaction with PKC-d. H2O2 induces phosphory-
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lation of c-Src at Tyr418, a critical site for activation, leading
to association of c-Src with PKC-d in VSMCs. Also, a Src in-
hibitor blocks tyrosine phosphorylation of PKC-d in response
to H2O2 (74). These f indings further suggest that interaction
of PKC-d with a non-receptor tyrosine kinase leads to their
phosphorylation by each kinase toward the other, initiating
ROS-dependent signal transduction (85).

It should be noted that many of the previous findings de-
fined the role of Src kinases by using pharmacological in-
hibitors and dominant negative mutants, which could not es-
tablish the specific role of each isoform in mediating a specific
cellular function. The recent development of isoform-specific
knock-out cell lines may provide better information to eluci-
date the previous confusing role of ROS-dependent Src fam-
ily kinase activation. In this regard, c-Src is proposed to exist
upstream of JNK and Big MAP kinase (BMK1/ERK5) (3, 96),
whereas Fyn mediates the JAK2 and Ras/MAPK/ERK cascade
in mouse fibroblast cell lines (1). However, whether these cas-
cades can be applied in VSMCs need further study.

FUTURE DIRECTION AND PERSPECTIVE

In summary, the findings discussed here clearly support
the original hypothesis, which has been expanded to a new
theory that multiple risk factors activate tyrosine kinases by
ROS through distinct mechanisms in VSMCs and that each
ROS-sensitive kinase has a unique role in mediating cardio-
vascular disease. Even though tremendous progress has been
made in defining the role of ROS in tyrosine kinase-dependent
signal transduction in cardiovascular systems, there is still a
considerable void in our knowledge regarding the detailed
mechanism of ROS-initiated signaling. Here, several mecha-
nisms utilized by ROS to activate receptor and non-receptor
type tyrosine kinases have been discussed, of which there are
two significant contributors, a metalloprotease and PKC-d.
However, further extensive research is required to determine:
(1) the identity of the metalloprotease that could be a critical
ROS-sensing molecule in the EGF receptor transactivation
pathway, (2) its activation mechanism, and (3) what’s the down-
stream consequence in vivo. Further study is also needed to
determine whether PKC-d is directly activated by ROS, or
whether there another molecule that senses ROS directly.

The long-term goal ideally is to be able to target these
ROS-sensitive mechanisms with selective drugs to alleviate
the pathophysiological conditions they promote. Based on this
idea, you can imagine that we could target, for example, the
stress and inflammatory or cell growth pathway independently
according to the type of disease. Therefore, further character-
ization and understanding of the cellular mechanisms involved
in ROS signal transduction via tyrosine kinase activation will
provide new targets for effective therapies that will better en-
able us to control cardiovascular diseases.
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ABBREVIATIONS

ADAM, a disintegrin and metalloprotease; AngII, angio-
tensin II; AT1, AngII type 1; EGF, epidermal growth factor;
ERK, extracellular signal-regulated kinase; GPCR, G protein-
coupled receptor; H2O2, hydrogen peroxide; HB-EGF, hepa-
rin binding EGF-like growth factor; JNK, c-Jun N-terminal
kinase; LDL, low density lipoprotein; MAPK, mitogen-activated
protein kinase; PDGF, platelet-derived growth factor; PKC,
protein kinase C; PLC, phospholipase C; ROS, reactive oxy-
gen species; STAT, signal transducers and activators of tran-
scription; VSMC, vascular smooth muscle cell.
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